Scroll to navigation

zlaed8.f(3) LAPACK zlaed8.f(3)

NAME

zlaed8.f

SYNOPSIS

Functions/Subroutines


subroutine zlaed8 (K, N, QSIZ, Q, LDQ, D, RHO, CUTPNT, Z, DLAMDA, Q2, LDQ2, W, INDXP, INDX, INDXQ, PERM, GIVPTR, GIVCOL, GIVNUM, INFO)
ZLAED8 used by sstedc. Merges eigenvalues and deflates secular equation. Used when the original matrix is dense.

Function/Subroutine Documentation

subroutine zlaed8 (integer K, integer N, integer QSIZ, complex*16, dimension( ldq, * ) Q, integer LDQ, double precision, dimension( * ) D, double precision RHO, integer CUTPNT, double precision, dimension( * ) Z, double precision, dimension( * ) DLAMDA, complex*16, dimension( ldq2, * ) Q2, integer LDQ2, double precision, dimension( * ) W, integer, dimension( * ) INDXP, integer, dimension( * ) INDX, integer, dimension( * ) INDXQ, integer, dimension( * ) PERM, integer GIVPTR, integer, dimension( 2, * ) GIVCOL, double precision, dimension( 2, * ) GIVNUM, integer INFO)

ZLAED8 used by sstedc. Merges eigenvalues and deflates secular equation. Used when the original matrix is dense.

Purpose:


ZLAED8 merges the two sets of eigenvalues together into a single
sorted set. Then it tries to deflate the size of the problem.
There are two ways in which deflation can occur: when two or more
eigenvalues are close together or if there is a tiny element in the
Z vector. For each such occurrence the order of the related secular
equation problem is reduced by one.

Parameters:

K


K is INTEGER
Contains the number of non-deflated eigenvalues.
This is the order of the related secular equation.

N


N is INTEGER
The dimension of the symmetric tridiagonal matrix. N >= 0.

QSIZ


QSIZ is INTEGER
The dimension of the unitary matrix used to reduce
the dense or band matrix to tridiagonal form.
QSIZ >= N if ICOMPQ = 1.

Q


Q is COMPLEX*16 array, dimension (LDQ,N)
On entry, Q contains the eigenvectors of the partially solved
system which has been previously updated in matrix
multiplies with other partially solved eigensystems.
On exit, Q contains the trailing (N-K) updated eigenvectors
(those which were deflated) in its last N-K columns.

LDQ


LDQ is INTEGER
The leading dimension of the array Q. LDQ >= max( 1, N ).

D


D is DOUBLE PRECISION array, dimension (N)
On entry, D contains the eigenvalues of the two submatrices to
be combined. On exit, D contains the trailing (N-K) updated
eigenvalues (those which were deflated) sorted into increasing
order.

RHO


RHO is DOUBLE PRECISION
Contains the off diagonal element associated with the rank-1
cut which originally split the two submatrices which are now
being recombined. RHO is modified during the computation to
the value required by DLAED3.

CUTPNT


CUTPNT is INTEGER
Contains the location of the last eigenvalue in the leading
sub-matrix. MIN(1,N) <= CUTPNT <= N.

Z


Z is DOUBLE PRECISION array, dimension (N)
On input this vector contains the updating vector (the last
row of the first sub-eigenvector matrix and the first row of
the second sub-eigenvector matrix). The contents of Z are
destroyed during the updating process.

DLAMDA


DLAMDA is DOUBLE PRECISION array, dimension (N)
Contains a copy of the first K eigenvalues which will be used
by DLAED3 to form the secular equation.

Q2


Q2 is COMPLEX*16 array, dimension (LDQ2,N)
If ICOMPQ = 0, Q2 is not referenced. Otherwise,
Contains a copy of the first K eigenvectors which will be used
by DLAED7 in a matrix multiply (DGEMM) to update the new
eigenvectors.

LDQ2


LDQ2 is INTEGER
The leading dimension of the array Q2. LDQ2 >= max( 1, N ).

W


W is DOUBLE PRECISION array, dimension (N)
This will hold the first k values of the final
deflation-altered z-vector and will be passed to DLAED3.

INDXP


INDXP is INTEGER array, dimension (N)
This will contain the permutation used to place deflated
values of D at the end of the array. On output INDXP(1:K)
points to the nondeflated D-values and INDXP(K+1:N)
points to the deflated eigenvalues.

INDX


INDX is INTEGER array, dimension (N)
This will contain the permutation used to sort the contents of
D into ascending order.

INDXQ


INDXQ is INTEGER array, dimension (N)
This contains the permutation which separately sorts the two
sub-problems in D into ascending order. Note that elements in
the second half of this permutation must first have CUTPNT
added to their values in order to be accurate.

PERM


PERM is INTEGER array, dimension (N)
Contains the permutations (from deflation and sorting) to be
applied to each eigenblock.

GIVPTR


GIVPTR is INTEGER
Contains the number of Givens rotations which took place in
this subproblem.

GIVCOL


GIVCOL is INTEGER array, dimension (2, N)
Each pair of numbers indicates a pair of columns to take place
in a Givens rotation.

GIVNUM


GIVNUM is DOUBLE PRECISION array, dimension (2, N)
Each number indicates the S value to be used in the
corresponding Givens rotation.

INFO


INFO is INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

December 2016

Definition at line 230 of file zlaed8.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Tue Nov 14 2017 Version 3.8.0